On a Theorem of E. Helly
نویسندگان
چکیده
E. Helly’s theorem asserts that any bounded sequence of monotone real functions contains a pointwise convergent subsequence. We reprove this theorem in a generalized version in terms of monotone functions on linearly ordered sets. We show that the cardinal number responsible for this generalization is exactly the splitting number. We also show that a positive answer to a problem of S. Saks is obtained under the assumption of the splitting number being strictly greater than the first uncountable cardinal.
منابع مشابه
A Helly-type theorem for higher-dimensional transversals
We generalize the Hadwiger(-Danzer-Grünbaum-Klee) theorem on line transversals for an unbounded family of compact convex sets to the case of transversal planes of arbitrary dimension. This is the first Helly-type theorem known for transversals of dimension between 1 and d− 1.
متن کاملOn the Helly Number for Hyperplane Transversals to Unit Balls
We prove some results about the Hadwiger problem of nding the Helly number for line transversals of disjoint unit disks in the plane, and about its higher-dimensional generalization to hyperplane transversals of unit balls in d-dimensional Euclidean space. These include (a) a proof of the fact that the Helly number remains 5 even for arbitrarily large sets of disjoint unit disks|thus correcting...
متن کاملTransversal and Helly-type Theorems in Geometry, Combinatorics and Topology
Helly’s theorem also holds for infinite families of compact convex sets, and has stimulated numerous generalization and variants. Results of the type “if every m members of a family of objects have property P then the entire family has the property P” are called Helly-type theorems. The minimum positive integer m that makes this theorem possible is called the Helly number. Helly-type theorems h...
متن کاملTolerance in Helly-Type Theorems
In this paper we introduce the notion of tolerance in connection with Helly type theorems and prove, using the Erdős-Gallai theorem, that any Helly type theorem can be generalized by relaxing the assumptions and conclusion, allowing a bounded number of exceptional sets or points. In particular, we analyze some of the classical Helly type theorems, such as Caratheodory’s and Tverberg’s theorems,...
متن کاملThe Colorful Helly Theorem and Colorful Resolutions of Ideals
We demonstrate that the topological Helly theorem and the algebraic Auslander-Buchsbaum may be viewed as different versions of the same phenomenon. Using this correspondence we show how the colorful Helly theorem of I.Barany and its generalizations by G.Kalai and R.Meshulam translates to the algebraic side. Our main results are algebraic generalizations of these translations, which in particula...
متن کاملComplexity Aspects of the Helly Property: Graphs and Hypergraphs∗
In 1923, Eduard Helly published his celebrated theorem, which originated the well known Helly property. A family of subsets has the Helly property when every subfamily thereof, formed by pairwise intersecting subsets, contains a common element. Many generalizations of this property exist which are relevant to some fields of mathematics, and have several applications in computer science. In this...
متن کامل